11,885 research outputs found

    SmileNet: Registration-Free Smiling Face Detection In The Wild

    Get PDF

    Production and optical properties of liquid scintillator for the JSNS2^{2} experiment

    Full text link
    The JSNS2^{2} (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment will search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS2^{2} inner detector will be filled with 17 tons of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate γ\gamma-catcher and outer veto volumes. JSNS2^{2} has chosen Linear Alkyl Benzene (LAB) as an organic solvent because of its chemical properties. The unloaded LS was produced at a refurbished facility, originally used for scintillator production by the RENO experiment. JSNS2^{2} plans to use ISO tanks for the storage and transportation of the LS. In this paper, we describe the LS production, and present measurements of its optical properties and long term stability. Our measurements show that storing the LS in ISO tanks does not result in degradation of its optical properties.Comment: 7 pages, 4 figures

    Isometric Representations of Totally Ordered Semigroups

    Get PDF
    Let S be a subsemigroup of an abelian torsion-free group G. If S is a positive cone of G, then all C*-algebras generated by faithful isometrical non-unitary representations of S are canonically isomorphic. Proved by Murphy, this statement generalized the well-known theorems of Coburn and Douglas. In this note we prove the reverse. If all C*-algebras generated by faithful isometrical non-unitary representations of S are canonically isomorphic, then S is a positive cone of G. Also we consider G = Z\times Z and prove that if S induces total order on G, then there exist at least two unitarily not equivalent irreducible isometrical representation of S. And if the order is lexicographical-product order, then all such representations are unitarily equivalent.Comment: February 21, 2012. Kazan, Russi

    Superconducting energy gap in MgCNi3 single crystals: Point-contact spectroscopy and specific-heat measurements

    Get PDF
    Specific heat has been measured down to 600 mK and up to 8 Tesla by the highly sensitive AC microcalorimetry on the MgCNi3 single crystals with Tc ~ 7 K. Exponential decay of the electronic specific heat at low temperatures proved that a superconducting energy gap is fully open on the whole Fermi surface, in agreement with our previous magnetic penetration depth measurements on the same crystals. The specific-heat data analysis shows consistently the strong coupling strength 2D/kTc ~ 4. This scenario is supported by the direct gap measurements via the point-contact spectroscopy. Moreover, the spectroscopy measurements show a decrease in the critical temperature at the sample surface accounting for the observed differences of the superfluid density deduced from the measurements by different techniques

    Hamiltonian Analysis of Poincar\'e Gauge Theory: Higher Spin Modes

    Get PDF
    We examine several higher spin modes of the Poincar\'e gauge theory (PGT) of gravity using the Hamiltonian analysis. The appearance of certain undesirable effects due to non-linear constraints in the Hamiltonian analysis are used as a test. We find that the phenomena of field activation and constraint bifurcation both exist in the pure spin 1 and the pure spin 2 modes. The coupled spin-00^- and spin-22^- modes also fail our test due to the appearance of constraint bifurcation. The ``promising'' case in the linearized theory of PGT given by Kuhfuss and Nitsch (KRNJ86) likewise does not pass. From this analysis of these specific PGT modes we conclude that an examination of such nonlinear constraint effects shows great promise as a strong test for this and other alternate theories of gravity.Comment: 30 pages, submitted to Int. J. Mod. Phys.

    Magnetic Domain Patterns Depending on the Sweeping Rate of Magnetic Fields

    Full text link
    The domain patterns in a thin ferromagnetic film are investigated in both experiments and numerical simulations. Magnetic domain patterns under a zero field are usually observed after an external magnetic field is removed. It is demonstrated that the characteristics of the domain patterns depend on the decreasing rate of the external field, although it can also depend on other factors. Our numerical simulations and experiments show the following properties of domain patterns: a sea-island structure appears when the field decreases rapidly from the saturating field to the zero field, while a labyrinth structure is observed for a slowly decreasing field. The mechanism of the dependence on the field sweeping rate is discussed in terms of the concepts of crystallization.Comment: 4 pages, 3 figure
    corecore